

Welcome to Quoll’s documentation!

Quoll is the name of carnivorous marsupials living in Australia, New Guinea and Tazmania. It is also a python library for running NLP pipelines, based on the LuigiNLP [https://github.com/LanguageMachines/LuigiNLP] workflow system. Quoll takes care of the sequence of tasks that are common to basic Machine Learning experiments with textual input: preprocessing, feature extraction, vectorizing, classification and evaluation. Provided that you prepare instances and labels, all these tasks can be ran as a pipeline, in one go. Quoll is built on top of several applications in the LaMachine [https://github.com/proycon/LaMachine] Software distribution (Ucto [https://languagemachines.github.io/ucto/], Frog [https://languagemachines.github.io/frog/], Colibri-core [https://proycon.github.io/colibri-core/], PyNLPl [http://pynlpl.readthedocs.io/en/latest/]), as well as popular python packages (Numpy [http://www.numpy.org/], Scipy [https://www.scipy.org/] and Scikit-learn [http://scikit-learn.org/stable/]).

Quoll has the following advantages:

	Can run full supervised machine learning pipeline with one command.

	Stores intermediate output of the pipeline.

	Maintains a full log of your experiments.

	Offers various options at each stage of the pipeline.

	If part of the pipeline is already completed, will continue from that point.

	Experiments with different settings can be distinguished based on filenames.

Table of Contents

	The Featurize module
	Input

	Options

	Output

	Overview

	Examples of command line usage

	The Vectorize module
	Input

	Options

	Output

	Overview

	Examples of command line usage

Indices and tables

	Index

	Module Index

	Search Page

The Featurize module

The Featurize module is the second module in the pipeline, taking care of feature extraction from the output of the Preprocess module. It makes use of ColibriCore [https://proycon.github.io/colibri-core/] to count features, and its output forms the input to the Vectorize module.

Input

If the input to Preprocess_ (.txt or .txtdir) is given as inputfile, this module is ran prior to the Featurize module.

	--inputfile

	
	The featurize module takes preprocessed documents as input. They can come in four formats:

	Extension .tok.txt - File with tokenized text documents on each line.

	Extension .tok.txtdir - Directory with tokenized text documents (files ending with .tok.txt).

	Extension .frog.json - File with frogged text documents.

	Extension .frog.jsondir - Directory with frogged text documents (files ending with .frog.json).

Options

	--featuretypes

	
	Specify the types of features to extract

	Options: tokens, lemmas, pos

	lemmas and pos only apply to input with extension .frog.json and .frog.json.dir

	multiple options can be given with quotes, divided by a space (for example: ‘tokens lemmas pos’)

	String parameter; default: tokens

	--ngrams

	
	Specify the length of the N-grams that you want to include

	Ngram values should be given within quotes, divided by a space (for example: ‘1 2’)

	String parameter; default: ‘1 2 3’

	--blackfeats

	
	In order to exclude words from the feature space, specify them here

	Each feature to be excluded should be given within quotes, divided by a space (for example: ‘do re mi’)

	Each ngram within the feature space that includes any of the given blackfeats will be removed

	String parameter; default: False

	--lowercase

	
	Choose to lowercase all text and lemma features

	Boolean parameter; default: False

	--minimum-token-frequency

	
	Option to delete all features that occur below the given threshold

	Recommended to set to 5 or 10 when applying tfidf or infogain weighting in the Vectorize module

	Integer parameter; default: 1

Output

	.features.npz

	Binary file in Numpy format, storing the extracted features per document in sparse format

	.vocabulary.txt

	File that stores the index of each feature

Overview

	–inputfile

	–featuretypes

	–ngrams

	–blackfeats

	–lowercase

	–minimum-token-frequency

	Output

	docs.tok.txt

	tokens

	‘1 2 3’

	False

	True

	2

	
	docs.tokens.n_1_2_3.min2.lower_True.black_False.features.npz

	docs.tokens.n_1_2_3.min2.lower_True.black_False.vocabulary.txt

	dos.frog.jsondir

	‘tokens lemmas pos’

	1

	‘koala kangaroo’

	False

	10

	
	docs.tokens.lemmas.pos.n_1.min10.lower_False.black_koala_kangaroo.features.npz

	docs.tokens.lemmas.pos.n_1.min10.lower_False.black_koala_kangaroo.vocabulary.txt

Examples of command line usage

Extract word Ngrams from tokenized text document, lowercasing them and stripping away token Ngrams that occur less than 5 times

$ luiginlp Featurize –module quoll.classification_pipeline.modules.featurize –inputfile docs.tok.txt –lowercase –minimum-token-frequency 5

Extract lemma and pos Ngrams from directory with frogged texts

$ luiginlp Featurize –module quoll.classification_pipeline.modules.featurize –inputfile docs.frog.jsondir –featuretypes ‘lemmas pos’

Frog text document, extract text and pos features and strip away any feature with the word ‘snake’

$ luiginlp Featurize –module quoll.classification_pipeline.modules.featurize –inputfile docs.txt –frogconfig /mylamachinedir/share/frog/nld/frog.cfg –featuretypes ‘tokens pos’ –blackfeats snake

The Vectorize module

The Vectorize module is the third module in the pipeline, taking care of weighting and pruning features based on characteristics in the training data. In contrast to the preliminary Featurize_ and Preprocess modules, this module requires separate train and test input.

Input

If the input to Preprocess_ (.txt or .txtdir) or Featurize (.tok.txt, .tok.txtdir, .frog.json or .frog.jsondir) is given as input to traininstances or testinstances, this module is ran prior to the Vectorize module.

	--traininstances

	
	Traininstances takes featurized or vectorized documents as input. They can come in the following formats:

	Extension .features.npz - Output of the Featurize module.

	Extension .vectors.npz - Output of the Vectorize module (can be used for vectorizing test documents).

	Extension .csv - File with feature vectors formatted as comma-separated-values (useful when applying feature extraction that is not accomodated by quoll). When working with ‘.csv’-input, a file with featurenames should be created that has the same path and name as the ‘.csv’-file, replacing .csv with .featureselection.txt.

	--trainlabels

	
	Extension .labels - File with a label per line, should be as many instances as traininstances, where the position of the label corresponds to the instance on the same position.

	--testinstances

	
	Like traininstances, test instances takes featurized or vectorized documents as input. They can come in the following formats:

	Extension .features.npz - Output of the Featurize module.

	Extension .csv - File with feature vectors formatted as comma-separated-values (useful when applying feature extraction that is not accomodated by quoll). Can only be used when the input to traininstances is of the same format; the number of columns should be as many as for the traininstances input. Like

Options

Options for Preprocess_ and Featurize_ also apply and are effective in combination with the inputfiles for these modules.

	--weight

	
	Specify the feature weighting

	Does not work in combination with a ‘.csv’-file

	Options: frequency, binary, tfidf, **infogain

	For tfidf or infogain, it is recommended to set minimum feature frequency to 5 or 10 in the Featurize module

	String parameter; default: frequency

	--prune

	
	Specify the number of features to maintain after pruning

	Does not work in combination with a ‘.csv’-file

	Pruning is done by ranking features based on their feature weight (total count of a feature is taken in case of ‘frequency’ and ‘binary’ weighting

	Integer parameter; default: 5000

	--balance

	
	Choose to balance the number of train instances

	The number of instances for each class label is decreased to the instance count of the least frequent class

	Can help in case of strong class skewness

	Boolean parameter; default: False

	--delimiter

	
	Specify the delimiter by which columns in the ‘csv’-file are separated

	Only applies to ‘.csv’-files

	String parameter; default: ,

	--scale

	
	Option to normalize feature values to the same scale

	Only applies to ‘.csv’-file

	Useful in combination with some classifiers, if the features in the ‘.csv’-file are from different sources and have a wide range of values

	Boolean parameter; default: False

Output

	.balanced.features.npz

	Balanced instances
Only applied when ‘balance’ is chosen

	.balanced.labels

	Labels related to balanced instances
Only applies when ‘balance’ is chosen

	.balanced.vocabulary

	Vocabulary related to balanced instances

Overview

	–inputfile

	–featuretypes

	–ngrams

	–blackfeats

	–lowercase

	–minimum-token-frequency

	Output

	docs.tok.txt

	tokens

	‘1 2 3’

	False

	True

	2

	
	docs.tokens.n_1_2_3.min2.lower_True.black_False.features.npz

	docs.tokens.n_1_2_3.min2.lower_True.black_False.vocabulary.txt

	dos.frog.jsondir

	‘tokens lemmas pos’

	1

	‘koala kangaroo’

	False

	10

	
	docs.tokens.lemmas.pos.n_1.min10.lower_False.black_koala_kangaroo.features.npz

	docs.tokens.lemmas.pos.n_1.min10.lower_False.black_koala_kangaroo.vocabulary.txt

Examples of command line usage

Extract word Ngrams from tokenized text document, lowercasing them and stripping away token Ngrams that occur less than 5 times

$ luiginlp Featurize –module quoll.classification_pipeline.modules.featurize –inputfile docs.tok.txt –lowercase –minimum-token-frequency 5

Extract lemma and pos Ngrams from directory with frogged texts

$ luiginlp Featurize –module quoll.classification_pipeline.modules.featurize –inputfile docs.frog.jsondir –featuretypes ‘lemmas pos’

Frog text document, extract text and pos features and strip away any feature with the word ‘snake’

$ luiginlp Featurize –module quoll.classification_pipeline.modules.featurize –inputfile docs.txt –frogconfig /mylamachinedir/share/frog/nld/frog.cfg –featuretypes ‘tokens pos’ –blackfeats snake

Index

Overview of classification pipeline

 nav.xhtml

 Table of Contents

 		
 Welcome to Quoll’s documentation!

 		
 The Featurize module

 		
 Input

 		
 Options

 		
 Output

 		
 Overview

 		
 Examples of command line usage

 		
 The Vectorize module

 		
 Input

 		
 Options

 		
 Output

 		
 Overview

 		
 Examples of command line usage

_static/ajax-loader.gif

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

